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Christophe Moser,a and Demetri Psaltisa

aÉcole Polytechnique Fédérale de Lausanne, Institute of Electrical and Micro Engineering, Ecublens, Switzerland
bKoc University, Department of Electrical and Electronics Engineering, Istanbul, Turkey

Abstract. The ever-increasing demand for training and inferring with larger machine-learning models requires
more efficient hardware solutions due to limitations such as power dissipation and scalability. Optics is a
promising contender for providing lower power computation, since light propagation through a nonabsorbing
medium is a lossless operation. However, to carry out useful and efficient computations with light, generating
and controlling nonlinearity optically is a necessity that is still elusive. Multimode fibers (MMFs) have been
shown that they can provide nonlinear effects with microwatts of average power while maintaining parallelism
and low loss. We propose an optical neural network architecture that performs nonlinear optical computation by
controlling the propagation of ultrashort pulses in MMF by wavefront shaping. With a surrogate model, optimal
sets of parameters are found to program this optical computer for different tasks with minimal utilization of an
electronic computer. We show a remarkable decrease of 97% in the number of model parameters, which leads
to an overall 99% digital operation reduction compared to an equivalently performing digital neural network.
We further demonstrate that a fully optical implementation can also be performed with competitive accuracies.
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1 Introduction
Machine-learning architectures have come to be dominated by
artificial neural networks (ANNs). There are several reasons
why this architecture is used so broadly. Initially, their similarity
with biological neural networks1 provided strong motivation to
explore ANNs. At the same time, the fact that ANNs are univer-
sal machines2 that are able to approximate any function breeds
confidence that ANNs can carry out useful and difficult tasks.
Perhaps most significantly, the fact that error backpropagation3

has proven very effective in training such networks catapulted
their application to a wide variety of problems. Ever-larger
networks4 have been adopted for tackling challenging tasks.5

Empirically, it has been found that larger networks tend to
perform better given a sufficiently large database of training ex-
amples. This has led to a “bigger is better” mentality.6 However,
the disadvantage of this mentality is the energy required to train
and use very large networks. For instance, only training the

language model GPT-3, which has 175 billion parameters,
consumed 1.3 GWh of electricity, which is the energy required
to fully charge 13,000 Tesla Model S cars.7 Optics can help
overcome this downside, since light propagation through a non-
absorbing, nonscattering medium is a lossless linear operation.

Several approaches have been reported for the optical
realization of ANNs. Wavefront shaping by diffractive surfaces
or modulators, followed by propagation can implement
ANNs and perform different tasks, such as classification and
imaging.8–12 Silicon photonics technology also allows the
realization of reconfigurable optical computing with much
smaller dimensions. Control structures such as Mach–Zehnder
modulators13 and microring resonators14 can precisely manipu-
late light inside waveguides as building blocks of ANNs,
performing operations such as multiplication or addition.
However, their constraint to two dimensions diminishes the
intrinsic three-dimensional scalability of optics.15 Additionally,
in both of those domains, nonlinearity is obtained generally
by optoelectronic devices, which impairs energy efficiency and
speed.16*Address all correspondence to Ilker Oguz, ilker.oguz@epfl.ch
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Moreover, as optical ANNs are analog systems, their training
is cumbersome. The gradient descent optimization algorithms
can be applied ex situ8 or in situ;17 however, the system should
be completely calibrated, or perfectly modeled. As an alterna-
tive, stochastic or deterministic gradient-free optimization algo-
rithms could be utilized for the training. Stochastic, evolutionary
algorithms, such as genetic algorithms, found themselves
implementations18,19, as they do not require any model of the
systems and through efficient trial and error mechanisms, they
can directly optimize the NNs with experiments, however, they
require a very high number of trials.20,21 On the other hand, deter-
ministic, surrogate-based optimization algorithms are guided by
a simple metamodel between input parameters and loss function
directly and are proven to be able to provide excellent results in
digital NNs with a smaller number of iterations.22–24

In contrast to determination and rigorous mapping of individ-
ual weights of ANN models to photonics devices, ANNs based
on high-dimensional, fixed, and nonlinear connections, such as
reservoir computers25 or extreme learning machines26 can directly
be implemented with diverse optical dynamics, such as multi-
modal speckle formation,27,28 random scattering,29 and transient
responses.30 The necessary nonlinearity between neurons could
be introduced by electronic feedback,31 optoelectronic conver-
sion,29 saturable absorption,32 and second-harmonic generation.33

Moreover, the Kerr effect inside both single-mode34 and
multimode35 fibers (MMFs) was shown recently to be an effec-
tive dynamic for realizing computing systems. Another set of
studies showed also that the nonlinear interactions inside
MMFs are tunable by wavefront shaping.36–38 However, the
configurability of this physical computing approach has been
limited to the digital readout weights (RWs) to map the output
of the transform to a desired inference,25 even though it has been
shown computationally that evolutionary algorithms could be
used to select the initial fixed linear transform.39

In this paper, we present an optical ANN architecture that
combines a relatively small number of digitally implemented
parameters to control the very complex spatiotemporal transfor-
mation realized by optical wave propagation. Our experimental
studies show that with a spatial light modulator (SLM), by simul-
taneously shaping light with data and a fixed programming pat-
tern, we can induce the nonlinear transformation inside theMMF
to perform desired computations. We find that the optimization
of a small number of programming parameters (PPs), around
50 in our experiments, results in a remarkable performance of
the optical computer. For instance, we will show that the system
with ∼2000 total parameters (TPs), PPs, and RWs combined,
performs as well as a digital ANN with over 400,000 parameters
for the face classification task on the CelebA40 dataset (Table 2).
Moreover, we demonstrate that the same method can be used to
program the propagation inside MMFs to perform all-optical
classification without the digital readout stage. In this case,
the classification can be directly read out with a simple beam
location sensor, further decreasing the number of TPs.

2 Methods and Results

2.1 Nonlinear Fiber Propagation and Its Programming
for Higher Classification Performance

Our method consists of a nonlinear optical transformation and a
programming algorithm. In this study, the optical experiment is
selected to be the propagation of spatially modulated laser pulses

through an MMF. The nonlinear propagation of an ultrashort
pulse inside an MMF is a highly complex process that entails
spatial and temporal interactions of electromagnetic waves
coupled with hundreds of different propagation modes. In addi-
tion to light transfer between different channels due to linear
mechanisms, such as bending and defects in the fiber, at high
intensity levels light–matter interactions start to occur, and this
results in energy exchange between different modes depending
on products of these modes. These interactions can be concisely
described with the multimode generalized nonlinear Schrödinger
equation,41
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∂t − i
βp2
2

∂2Ap

∂t2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dispersion

þ i
X
n

Cp;nAn

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
linear mode coupling

þ i
n2ω0

Sp

X
l;m;n

ηp;l;m;nAlAmA�
n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nonlinear mode coupling

: (1)

Here Ap is the complex coefficient of the p’th normalized
mode, where βpk is the k’th order propagation constant for this
mode. Cp;n is the linear coupling coefficient between modes
p and n, which becomes nonzero when there are nonidealities
in the waveguiding structures, such as ellipticity, bending, or
impurities. n2 is the nonlinear refractive index of the material,
ω0 is the center angular frequency, and Sp is the effective mode
area of mode p in the fiber. ηp;l;m;n is the nonlinear coupling
coefficient between modes; it mainly depends on the similarity
between spatial shapes of modes (Fp) and can be calculated as
ηp;l;m;n ¼

R
dxdyF�

pFlFmF�
n. Due to the short propagation

length in the study, the higher-order dispersion effects are not
shown. Similarly, Raman scattering is not observed dominantly
in the experiments (see Fig. 6); hence in the nonlinear mode
coupling part, only the contribution of the Kerr effect is shown.

The triple multiplications ðAlAmA�
nÞ with varying strengths

of interaction (ηp;l;m;n) between different sets of modes demon-
strate the nonlinear and immensely multimodal aspect of the
interactions such that modeling the transform of a single pulse
on the setup provided in Fig. 1 would take 50 min with a graphics
processing unit (GPU).42 The physical optical system carries out
this complex spatiotemporal transformation “effortlessly.” The
transformation is programmed with a relatively small number
of PPs. PPs are selected to customize the MMF processor for
the specific task by wavefront shaping, controlling the optical
power, and the placement of the data and diffraction angle on
the SLM. This way the PPs can modify implicitly the distribution
of Ap, which determines the nonlinear computation the MMF
performs on the data. For instance, changing the diffraction angle
on the SLM away from the optical axis moves the beam’s focus
from the center of the MMF, which is placed in the focal plane of
the coupling lens. This primarily excites higher-order modes and
effectively changes the part of ηp;l;m;n tensor that acts on the data.
The combination of wavefront shaping and data encoding as
shown in Fig. 1 can be formalized as follows, where the com-
plex encoded value on the SLM Ek

SLMðx; yÞ is given by

Ek
SLMðx; yÞ ¼ WFðx; yÞ expðiDkðx; yÞÞ

¼ jWFðx; yÞj expðiðDkðx; yÞ þ ArgðWFðx; yÞÞÞÞ:
(2)

Oguz et al.: Programming nonlinear propagation for efficient optical learning machines

Advanced Photonics 016002-2 Jan∕Feb 2024 • Vol. 6(1)



The amplitude modulation with the phase-only SLM is real-
ized by modifying the strength of a blazed grating (see Method 3
in the Supplementary Material), whereas the data [Dkðx; yÞ] are
encoded as a phase pattern. The wavefront controlling shape
[WFðx; yÞ] is a complex combination of N different linearly
polarized fiber modes Fnðx; yÞ, and the coefficient of each mode
is controlled by two parameters, for real and imaginary parts.
Even though other bases for controlling the wavefront can also
be effective, we used the propagation modes of the optical fiber,
Fnðx; yÞ, since they are interpretable, orthonormal, and guaran-
teed to be within the fiber’s numerical aperture. The portion of
the wavefront shape that contains the 2N PPs (an) is

WFðx; yÞ ¼
XN
n¼1

ða2n−1 þ ia2nÞFnðx; yÞ: (3)

During each step of the programming procedure, the optical
system processes the dataset for a set of values for PPs, and the
task performance is measured. Depending on the task, the per-
formance metric could be the training accuracy of the final RWs
(Fig. 2), or the ratio of correctly placed outputs for all-optical
tasks (Fig. 3). Throughout the process of programming optical
system, a surrogate optimization algorithm22 selects values of
PPs to explore the dependency between them and the loss func-
tion, which is the negative of the accuracy in classification tasks,
and finally finds the globally optimal set of PP values for the
best computational performance. The same procedure is also
widely used in the optimization of NN architectures;43 its details
are provided in the Appendix.

In the experimental realization of the method, a commer-
cially available mode-locked laser at 1030 nm (Amplitude

Laser, Satsuma) with 125 kHz repetition rate is used, and
the pulse length is set to be the longest possible, 10 ps, with
an internal dispersive grating stretcher for obtaining a longer
dispersion length. This maximizes the length in which nonlinear
interactions effectively occur in the 5 m-long graded-index
multimode fiber (OFS, bend-insensitive OM2, 50 μm core
diameter, 0.20 NA, 240 modes at 1030 nm), without being hin-
dered by dispersion-induced pulse broadening. Before coupling
to the MMF, the laser beam is sent onto a reflective phase-only
SLM (Meadowlark HSP1920), which encodes the data to be
transformed by the optical system to 0 to 2π phase retardation
at each pixel location and combines them with a complex
pattern containing the PPs, as described in Eq. (1). The intensity
of the coupled pulsed laser beam is also treated as one of the
PPs; it is controlled via a half-wave plate mounted on a motor-
ized rotation stage followed by a polarizing beam splitter and
is optimized through the surrogate model. Once the PPs are
determined, the data portion of the modulation changes with
every sample, while the programming part stays the same. Upon
exiting the fiber, the beam is collimated with a lens and sent to
a blazed grating. The dispersion due to the grating leads to a
camera recording, in which both spatial and temporal character-
istics of the output beam are present.

The classification accuracies are calculated by training a sim-
ple regularized linear regression algorithm with L2 regulariza-
tion on the pixel intensity values of the recorded images on the
camera in Fig. 1. The linear regression maps the recorded image
to classification results by pointwise multiplication with RWs
and summation. Finally, the pairs of PPs and corresponding task
performance of the system are supplied to the surrogate algo-
rithm that optimizes the optical transform. After acquiring
the performance metric for different sets of PPs, the surrogate

Fig. 1 Experiment flow for programming optical propagation for a computational task. The SLM
modulates the laser pulses with the data sample overlaid with a fixed programming pattern
calculated by the programming patterns. The beam is coupled to an MMF; the pattern after
propagation is recorded with a camera. A trainable output classification layer calculates the task
accuracy, which is fed back to the surrogate optimization algorithm. The algorithm improves the
task performance by exploring different PPs and refining potential solutions.
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optimization algorithm creates mappings between the perfor-
mance of the system and any given set of PPs. The surrogate
algorithm continuously refines the model and increases the
performance on the task at the same time. Video 1 and Fig. 2
illustrate such an experiment, where the data transform with the
MMF was programmed for a higher classification accuracy on a
small subset (2%) of the Fashion-MNIST dataset, which con-
sists of 1200 training images and 300 test images of 10 different
classes of fashion items.44

As shown in Fig. 2, for the first 105 iterations, the surrogate
optimization algorithm broadly samples the parameter space to
create the initial mapping between PPs and the performance
metric. After this phase, an area with the potential of yielding
the best result is selected and sampled in finer steps. Gradually,

the changes become smaller, and the algorithm converges to a
solution. Figure 2(b) provides a closer look at the progression of
the process, where each data point represents an iteration, the
two-dimensional random projection of 46 wavefront shaping
parameters versus the training accuracy. The initial homo-
geneous sampling of the parameter space and final fine-tuning
can be observed. Similarly, Fig. 2(c) shows that after exploring
various levels of optical intensity, hence nonlinearity, the con-
vergence led to a higher light intensity for obtaining a more
efficient nonlinear optical transform. Even after converging,
the search algorithm probed different intensity levels to ensure
not being stuck in a local minimum but came back to the same
level confirming it is the optimum. This is also made possible
by converging to a preferred oblique excitation of the fiber,

Fig. 2 Programming the MMF propagation for higher classification performance on Fashion-
MNIST dataset. (a) Training accuracy during the progress of the programming procedure.
The horizontal line labeled “without programming” shows the accuracy level when PPs are
set to zero and “with programming” indicates the level when the PPs found by the programming
algorithm are used. The colors of circles indicate their sequence in the training. (b) Relation
between wavefront shaping parameters and training accuracy. Forty-six different wavefront shap-
ing parameters are shown in two dimensions by means of random projection into two dimensions
for visibility. (c) Peak power of pulses during the programming procedure. (d) Change of the
diffraction angle on the SLM in horizontal and vertical directions (Δϕ and Δθ). (e) Shift of image
on the SLM in horizontal and vertical directions (Δx and Δy ). (f) Confusion matrix and average
accuracy on the test set, without and with the programming of the transform (Video 1, MP4,
2.31 MB [URL: https://doi.org/10.1117/1.AP.6.1.016002.s1]).
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as shown in Fig. 2(d), allowing for stronger coupling to higher-
order fiber modes as well, hence benefiting from the multimo-
dality of the fiber. Overall, programming the optical propagation
by optimized PPs improved the classification accuracy both on
the training and the test sets by about 5% compared to using a
not programmed propagation35 and reached 77% accuracy on
the test set. In comparison, seven-layer digital convolutional
neural network (CNN) LeNet-545 yields 77.9% accuracy when
trained with the same dataset on a GPU (for details see Method 1
in the Supplementary Material). Later, we present another
approach for programming the propagation, in which PPs
are combined with data through convolution, and 79.0% test
accuracy is reached on the same task.

2.2 All-Optical Computing with Propagation in Optical
Fiber

In Fig. 2, the PPs were optimized to modify the optical trans-
form inside the MMF to improve the performance of the com-
bination of the optical system and the digital readout layer.

To further demonstrate the programming capacity of our ap-
proach, the inference on input samples was done all-optically
without any RWs by only using the center location of the output
speckles, as shown in Fig. 3. For a binary classification problem,
the input is classified as either “0” or “1,” depending on which
side of the classification line the center of the output beam
resides. Hence, only three parameters are required at the output
for defining any line in two dimensions. Figure 3 illustrates
the programming procedure for all-optical classification of the
dataset, consisting of 1200 training and 300 test chest radiog-
raphy images, equally sampled from patients with and without
COVID-19 diagnosis.46

Before programming the system, a linear classifier received
the distribution of center locations without any control patterns
and drew a classification boundary between positive and neg-
ative samples. As the transform is random, the classifier could
only produce training and test accuracies around 50%. Then the
decision boundary is kept the same, and the training accuracy is
improved by optimizing the PPs on the SLM with the surrogate
model to separate the center location distributions for samples

Fig. 3 Programming procedure for all-optical classification of chest radiographs. (a) The sche-
matic of the experiment, the data, and the control pattern are sent together to the SLM, and
the fiber output pattern is imaged onto a camera. (b), (c) Distribution of the beam center locations
and corresponding confusion matrices for the test set, without and with the programming of the
transform. (d) Distribution of training accuracies with respect to the selection of wavefront shaping
parameters. (e) Selected power levels for each iteration of the programming procedure.
(f) Progression of training accuracy during training. The color map relates the color of circles to
their sequence in the training, and it applies to (d)–(f) (Video 2, MP4, 4.17 MB [URL: https://doi.org/
10.1117/1.AP.6.1.016002.s2]).
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with positive and negative labels, as shown in Video 2. This
procedure improved the accuracy on the test set from 46% to
77%, as shown in Table 1. This performance, realized all-
optically with only 55 TPs, compares favorably to LeNet-5,
which uses about 61,000 parameters. A state-of-the-art, pre-
trained ANN (EfficientNetB647) with 4.1 × 107 parameters
achieves an 88.3% test accuracy when fine-tuned for the same
task. Similarly, on the task of classifying skin lesions of equally
sampled benign (nevus) and malignant (melanoma) case im-
ages,48,49 1200 samples being training and 300 test, all-optical
system yields a 61.3% test accuracy.

2.3 Different Wavefront Shaping Approaches for
Programming the Optical Transform

For the two experiments shown previously, the optical transform
was programmed through the multiplication of fields by encod-
ing data and PPs [i.e., D and WF terms in Eq. (2), respectively]
as shown in Fig. 2 and detailed in Fig. 4(a). In this section,
we demonstrate that the transform can be achieved with two
additional ways of wavefront shaping, as depicted in Fig. 4.

For the modification of the phase, the control pattern was
again formed, as described in Eq. (2). Thus this function is
elementwise digitally multiplied with the input image from
the dataset and placed on the SLM as visualized in Fig. 4(f).
For the N’th sample of the dataset, the field diffracted by the
SLM becomes EN

SLMðx; yÞ ¼ expðiðDNðx; yÞArgðWFðx; yÞÞÞÞ.
After optimization of the PPs, the test accuracy on the subset
of Fashion-MNIST reached 78%.

Alternatively, convolutional filters can be used to amplify or
attenuate different parts of the angular spectrum of the field—
hence its mode decomposition inside the MMF. Importantly,
convolutional filters can be applied fully optically by filtering
in the Fourier plane.50 Figure 4(k) depicts that convolution
can also program the nonlinear propagation and could reach
79% test accuracy on the same dataset when each element of
the convolution kernel is set as PPs. Hence, the c × c convo-

lution kernel could be written as A ¼

2
64

a1 � � � ac
..
. . .

. ..
.

ac2−cþ1 � � � ac2

3
75 in

terms of programming c2 PPs. Then the field modulated by the
convolution filtered N’th sample of the dataset is EN

SLMðx; yÞ ¼
expðiðA⊛DNðx; yÞÞÞ. Similarly, on the 1200 training and 300
test samples from the MNIST-digits dataset 94.3% accuracy,
which is comparable to the 94.9% accuracy of a nine-layer
digital ANN with ∼420;000 parameters, could be reached with
the same approach, demonstrating that different wavefront shap-
ing strategies could realize the enhanced interactions within the
optical fiber.

2.4 Transferring Programming Parameters across
Different Tasks and Datasets

The optimization of PPs from scratch requires processing the
selected dataset on the experimental system more than 100 times
while modifying the PPs. With ∼50 frames per second rate,
this process takes a few hours for a dataset of 1500 images.
In addition to switching to faster optoelectrical devices, the abil-
ity to transfer previously optimized PPs to new tasks or datasets
would boost the practical utility of this approach as a general-
purpose component that can be quickly deployed on different
problems. This ability is first demonstrated with the reusability
of PPs on different tasks for the same dataset. After finding the
set of optimal PPs for the task of classifying the gender of the
person in an image from Celebrity Face Attributes dataset
(CelebA),40 the same set of PPs is used for determining the
age of the person. The only training required for the transfer
between tasks is the determination of RWs without any new
surrogate optimizations involving the optical system. Table 2
compares the performance of the PP transfer between age
and gender tasks by fully programming the system for each task
separately, showing that the test accuracy with the parameter
transfer follows the accuracy of programming from scratch.
Without programming the fiber, the test accuracy on the age
classification task is 59.0% and 2026 RWs are used. After opti-
mizing additional 52 PPs (wavefront shaping and experimental
parameters, reaching 2078 TPs), the test accuracy reaches
67.0%, performing better than a digital nine-layer CNN with
about 412,000 parameters. When these optimized 52 PPs are
used on the gender classification task on the same dataset only
with retraining of the RWs, the accuracy on the new task is
76.0%, which is similar to the 76.3% achieved by programming
the system from scratch with the gender database. The same
findings hold true when the initial programming is done on
the gender task and parameters are transferred to the age task.

Furthermore, we find that with transfer learning,51 the opti-
mized PPs can also be utilized with a different dataset after
only a short corrective programming. The PPs optimized for
the COVID-19 classification dataset with the all-optical ap-
proach are transferred to the task of classifying skin lesions be-
tween benign (nevus) and malignant (melanoma) case images48

(Fig. 5). However, directly transferring the PPs from former to
latter resulted in a test accuracy of 47.67%, which is similar to a
random prediction. In corrective programming, a smaller set of
parameters (11 in total) is designated for optimizing the previ-
ously acquired set of PPs. These 11 parameters are combined
with 52 PPs by repetition of each element multiple times and
element-wise addition. Thus an optimal set of PPs is found
in the proximity of the initial expectation by optimizing in a
lower dimensional search space. Decreasing the dimensionality

Table 1 Comparison between neural networks and all-optical classification system.

Network structure
Total number of

parameters

Operations per
sample on digital
computer (FLOP)

Accuracy on
melanoma
dataset (%)

Accuracy on
COVID-19
dataset (%)

LeNet-5 61,026 844,520 63.9 ± 1.6 73.2 ± 2.4

EfficientNetB6 4.1 × 107 4.2 × 108 77.3 ± 0.6 88.3 ± 0.6

MMF + classification with output location
(with programming)

55 2029 61.3 77.0
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enables a convergence in fewer iterations. Compared to the com-
plete programming of the system in 300 iterations, corrective
programming starts from a similar initial accuracy, and after
80 iterations instead of 300, reaches the same final test accuracy.

2.5 Role of Nonlinearity in the Optical Transform

Nonlinear activation functions between linear mappings in
NNs allow them to approximate complex, nonlinear functions.
Without nonlinearities, an NN would be limited to representing
only linear transformations of the input data, which would se-
verely limit its ability to model real-world data and solve com-
plex problems. Similarly, in the proposed method, nonlinearities
play a crucial role for the generalization performance. In addi-
tion to fixed nonlinearities acting on the input data, such as

phase modulation and intensity detection, optical nonlinear
effects provide controllable means to introduce nonlinearity to
the information transform. One of the main factors affecting the
extent of optical nonlinearity is the intensity level of the beam.
In Fig. 6, the effect of the peak power of laser pulses on the
optical and data processing characteristics of the experiment
is analyzed. Since the pulse length and repetition rate of the laser
are measured beforehand, the peak power level is calculated
from the average laser power by dividing it by the pulse length
and repetition rate. In accordance with Kerr nonlinear effects in
graded-index MMFs, the spectra become broader with higher
peak powers, and the intensity of the beam focalizes to the
center due to Kerr beam self-cleaning. This also affects the
performance of the computational task, and, as Fig. 6(a) depicts,
up to a peak power level of 7 kW, increased nonlinearity

Fig. 4 Programming the optical transform using (a) phase addition and amplitude modulation,
(e) multiplication with phase, and (i), (m) convolution. (b), (f), (j), (n) Example of programmed
patterns on the SLM and recorded intensity patterns after the propagation inside the optical fiber
for the given input pattern; for (f), (j), and (n), the intensity is not modulated. (c), (g), (k), (o) depict
the progression of training accuracies during programming iterations. The confusion matrices on
(d), (h), (l), (p) illustrate the classification performance of the programmed optical transform with
different methods.
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Table 2 Performance of different CNNs and optical computing methods on the CelebA dataset.

Network structure
Total number
of parameters

Operations per
sample on digital
computer (FLOP)

Test accuracy
on age task (%)

Test accuracy on
gender task (%)

LeNet-1 1702 275,724 60.3 ± 1.0 70.7 ± 1.0

LeNet-5 61,026 844,520 63.8 ± 1.4 75.4 ± 2.1

Nine-layer convolutional NN 411,794 65,163,532 65.3 ± 0.1 80.1 ± 0.7

MMF + linear output layer 2026 4050 59.0 69.0

Programmed MMF for age task + linear output layer
(trained for the corresponding test task)

2078 6075 67.0 76.0

Programmed MMF for gender task + linear output layer
(trained for the corresponding test task)

2078 6075 64.7 76.3

Fig. 5 Using previously dedicated parameters on a new dataset with corrective programming.
(a) Procedure for transferring the PPs. (b)–(d), (h), (i) The experiment when the PPs are fully
programmed without any prior knowledge. (e)–(g), (j), (k) Corrective programming of parameters.
(b), (e) Relation between wavefront shaping parameters projected to two dimensions and the
training accuracy. (c), (f) Peak power of pulses at the fiber entrance. (d), (g) Color bar for coding
the iteration number related to each data point on (b), (c), (h) and (e), (f), (j). (h), (j) Training
accuracy during the progress of the programming procedure. (i), (k) Confusion matrix and average
accuracy on the test set.
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improves accuracy. Above this value, performance monoto-
nously decreases, possibly due to the deleterious nature of beam
self-cleaning on the modal distribution. This process couples the
energy from higher-order modes to the fundamental mode.52

Depending on the original distribution of energy between propa-
gation modes, the optimal power for the task can change. For
instance, in contrast to the one in Fig. 6, the experiment in Fig. 2
utilized other PPs than the intensity level, and especially with
oblique coupling, higher-order modes are excited more; hence,
the optimal peak power level is found to be much higher,
around 13 kW.

3 Discussion

3.1 Computation Speed and Energy

The speed of inferences is limited by the refresh rate of the
liquid crystal SLM. This limitation can be overcome by
switching to a faster wavefront shaping method, for instance,
by utilizing commercial digital micromirror devices, which
can reach 30,000 frames per second.53 Since the number of
modes in the MMF is much smaller than the number of
pixels on commercial SLMs, different lines of the SLM could
be scanned with the beam by a resonant mirror, allowing up
to 25 million samples per second data input rate. Moreover,
the fixed complex modulation or convolution operations
can be implemented with optical phase masks, bringing the
digital operation count further down. Similarly, instead of
the digital readout layer, a broadband diffractive element
can realize the linear projection step. As it is analyzed in
Note 2 in the Supplementary Material and visualized in Fig. 7,
implementing the same optical computer with a selection of
commercially available, high-speed equipment such as digital
micromirror devices and quadrant photodiodes, 25 TFLOP/s
performance could be reached with a total power consumption
of 12.6 W, which is significantly lower than 300W consumption
of a GPU with a comparable performance.54

3.2 Stability and Reproducibility

The reproducibility of experiments is crucial for consistent
comparison between different sets of PPs during programming
and long-term usability of determined PPs. To investigate

reproducibility, the inference experiment is repeated every 5 min
for the same PPs and RWs on the same task over 15 h. As shown
in Fig. S1 of the Supplementary Material, the first and final
test accuracies are the same, and the standard deviation of the
test accuracy over time is 0.3%, indicating a very stable exper-
imental inference.

In conclusion, programming nonlinear propagation inside
MMFs with wavefront shaping techniques can exploit complex
optical interactions for computation purposes and achieve re-
sults on par with multilayer neural networks while decreasing
the number of parameters by more than 97% and potentially
consuming orders of magnitude less energy for performing
the equivalent number of computations. This shows the
capacity of nonlinear optics for providing a solution for the
exponentially increasing energy cost of the machine-learning
algorithms. Not being limited to nonlinear optics, the presented
framework could be used for efficiently programming different
high-dimensional, nonlinear phenomena for performing ma-
chine-learning tasks.

Fig. 6 Dependency of the training accuracy on the CelebA gender classification task, diffracted
beam shape, and spectrum on the optical intensity level, with all other PPs set to zero. (a) Camera
images for the same input image and the task accuracy for different pulse peak powers. (b) Optical
spectrum after propagating in the fiber at different power levels for the same sample from the
dataset.

Fig. 7 Power efficiency and speed comparison between different
computational approaches. The possible optimization refers to
incorporating a digital micromirror device, a resonant mirror,
and an optical phase mask in the optical computer.
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4 Appendix: Programming Procedure
The optical experiment is considered as a whole with the final
classifier, called the optical classifier in Fig. 8. For each set of
PPs given by the sampling strategy, the optical classifier returns
a training score to the surrogate model. First, the data are trans-
formed by the optical system as detailed in Method 2 in the
Supplementary Material. For the experiments that perform clas-
sification with grating-dispersed fiber output images, initially
those images are downsampled from 180 × 180 to 45 × 45
by average pooling. Then these downsampled images are flat-
tened to 2025 features, and the ridge classification algorithm
from Python’s scikit-learn library is used for the determination
of RWs with an L2 regularization strength, alpha, set to 3000.
For all-optical classification experiments, the output beam shape
is imaged onto the camera without grating dispersion, and the
center of mass, ðxc; ycÞ, of the beam shape,Gðx; yÞ, is calculated
by xc ¼

P
∞
x¼−∞ x GðxÞP
∞
x¼−∞ GðxÞ , yc ¼

P
∞
y¼−∞ yGðyÞP
∞
y¼−∞ GðyÞ . This is the same infor-

mation as the one provided by simple beam location sensors. In
the first iteration, the classification line in 2D is drawn similarly
with the ridge classification algorithm, but by only using two
features and only training for the first iteration, keeping the
classification line fixed for the rest of the iterations. For each
iteration, the accuracy in the training set becomes another
sampling point for the surrogate model. This model is a cubic
radial basis function with a linear tail, implemented with Python
Surrogate Optimization Toolbox (pySOT) and initiated by
sampling 2M þ 1 Latin hypercube points, M being the number
of parameters to be optimized. After the initial fixed sampling,
DYCORS55 sampling strategy explores the parameter space for
the optimal set of parameters.
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